汽缸頭的秘密
我們要看一下改裝汽缸頭的內部,探討改裝一個汽缸頭牽涉到哪些東西,這是一個繁雜的工作而且會有很多選擇。這一系列的第四部要幫助你瞭解一些改裝汽缸頭的竅門,使你在改裝汽缸頭獲取最大馬力時可以做出最適當的決定。
汽缸頭的氣道順暢是製造大馬力不可或缺的要素,為何改善氣道的特性會生出你馬力呢? 引擎基本上就是一個空氣泵浦,為了要盡可能的製造出功率,必須用最少的力氣來吸進最大量的新鮮空氣,並排出燃燒後的廢氣。進排氣道多餘的阻力將使引擎消耗更多的功--一個不是用來轉動輪子的功,這個多消耗的功稱為「吸排損」(pumping loss無責任亂翻)。
想像一下用細吸管喝一杯很濃的奶席,你要多用一點力才吸的起來,如果換一根粗一點的吸管,就會容易多了不是嗎? 你用細吸管吸奶昔多花的力氣就是pumping loss。同樣的道理,如果你的引擎多花一些力氣來吸進氣體,它就會少了一些力氣來轉動曲軸和輪子。
另一個重要的因素是容積效率(or 填充效率 volumetric efficiency),容積效率是每一個進氣行程中,活塞掃過的體積被氣體填充的比率。例如你有一顆排氣量1000cc的引擎,假如它每一進氣行程只吸入800cc空氣,這顆引擎就有80%的容積效率。新的國產(作者他們國)自然進氣引擎的容積效率就在80%左右。
工廠通常會依照進排氣道的大小,謹慎的將其體積與形狀最佳化,特別是那些進口的引擎。但當要增加一顆引擎的馬力時,對空氣流通的需求就會改變,進氣岐管、汽缸頭、排氣系統以及凸輪軸,這些促進高轉運作的零件都需要更通暢的氣流特性。更多的空氣流過就需要大口徑的進/排氣道,如同用兩倍粗的吸管來吸奶昔一樣會更容易。這就是進排氣工程的最主要效應,藉由降低進/排氣阻力來降低pumping loss並增加容積效率。
在設計汽缸頭以及進排氣孔道走向時,常常為了降低汽缸頭高度好將引擎塞入更低的引擎蓋下或為了閃避汽缸頭螺絲、水道、挺桿...等,必須將進氣道彎曲來妥協。直到最近,進口高輸出馬力引擎的設計者,才在設計汽缸頭時先設計氣道以達到最佳的氣流特性以及容積效率。而國內(作者那一國)的引擎似乎是將其他零件位置的重要性擺在氣道前,Big 3(大三?)的設計人員似乎只先考慮有足夠空間的鑄體可以擺氣道,至於氣道位置等其他汽缸頭零件位置確定後最後再來決定。部份原因是因為這些引擎都是比較老的設計,製造商想延長其生命期增加獲利。
在進排氣修改工程中,進排氣道一般都是以手工小心的改變其形狀尺寸,氣道被加大、拉直、流線型化,以降低pumping loss造成的阻礙,以及降低氣體的亂流來盡可能的增加流速。
氣道直化(拉直)的過程中,大部分是用目視的方式以die grinder(可以拿在手上的那種小砂輪)和鑽頭來做出直線,拉直就可以去除那些產生亂流的彎曲處,雖然對此規則而言有少數的例外,但大多情況下可視為一個通則。此過程必須依靠大量的手工來完成如上述利用die grinder來去除切削痕、沙模鑄造的凹凸不平、以及工廠量產時碰撞的傷痕。有時甚至用CNC車床來處理那些比較受歡迎(量大)的引擎。雖然這工程對馬力有很大的好處,但一般都不會由工廠(製造商)來做,因為需要大量的手工以及高超技巧的技工,成本太貴了。
進排氣修改和其他改裝一樣,也有其限制,有時可能會把洞挖太大了,業餘的改裝者用氣動的grinder很容易就把動挖太大,大到像荷蘭的隧道(比別國的寬嗎?)。大的氣道可以通過大量的氣體,但是光有大量的氣體不會產生大馬力,相同氣體量的需求下,大孔徑的氣道會有較低的流速,一道固定質量的流體流體在較低流速下會有較少的慣性(inertia)和較少的位能(potential energy)(註:這邊作者應該是弄錯了,正確的說法應該是有固定的慣性,較少的動能),可能就失去衝擊進氣效應(ram effect靠氣體流動本身的動能將氣體盡量填充到汽缸裡),這個效應在低轉速時氣體完全充滿汽缸以及高速時的的最大容積效率都很關鍵。
低轉速時氣體的不完全填充會造成差的低轉馬力以及油門反應,將氣道挖太大的症狀就是沈悶的低轉速表現或是高馬力只會產生在很窄的轉速域,並伴隨著粗糙起伏不定的怠速。
化油器或節流閥體噴射供油(throttle-body fuel injection)的引擎,若有挖太大洞的情形,低流速或甚至停滯的氣流會造成噴油的問題,伴隨著引擎的反應呆滯。大致上,一顆進氣挖太大加上大角度凸輪的化油器引擎,在低轉速會幾乎無法起步。而且挖太大也會減弱汽缸頭的機械強度而造成彎曲,會時常衝掉汽缸墊片甚至汽缸頭直接裂掉。
有效率的進排氣修改,主要的訣竅就是將「吸管」加大到可以解你的飢渴,而非加大到連吸一口到嘴巴裡都有困難的地步,這是一個不是很好理解,技巧、藝術與科學的組合,並沒有死死的工程準則可以應用到所有的汽缸頭,每一種形式的汽缸頭反應會有一些差別。
為了真正了解一顆特定汽缸頭的最佳進排氣形式,設計人員花很多時間在流量台(flowbench)上,去探索有哪些技巧可以使汽缸頭增加最多的流量,大多是利用嘗試錯誤法,而流量台是一種可以測量汽缸頭氣流量的機器。一個好的汽缸頭專家會試圖將氣道做到以最小的擴大得到最大氣流量,將流速放優先,他們也會將每一氣道進氣等量,讓每一汽缸吸進同量的空氣。而大多數好的汽缸頭改家(tuner),會有他們自己的秘密修改方法,可以找出具有小體積、高流速以及大流量的神奇口徑。在NASCAR、CART、NHRA和F-1的競賽中,進排氣形狀是一個隊裡的最高機密。
前面有提到,以目視來修改進排氣道的方式會比事先設計好,但這不永遠是最好的修改氣道方式,有一些與直覺相反的例外存在,必須經由流量台或馬力機的驗證,大缸徑短衝程且器門距離近的引擎常常比較喜歡用氣道方向偏向汽缸壁的形式,這樣可以避免在進排氣重疊時,吸進的燃氣直接衝向排氣孔。
低導入角(進氣道比較水平)的引擎會在進氣道靠進氣門座的地方做出一個凸起狀,將進氣氣流導向汽缸底部避免進氣氣流直衝排氣口,而汽門位置較靠近汽缸邊緣的汽缸頭則會將進氣道方向指向缸徑中心,避免進氣氣流沿著汽缸壁而下。這些對策都無法由神奇的公式或是經驗法則來預測,只有在流量台與馬力機前才能分辨出誰是英雄誰是狗熊,而這也是藝術超越科學之處。
另一個汽缸頭的重要觀點就是汽門的處理,信不信由你,好的汽缸頭改裝,其氣流能力的改進有50%可由汽門的處理產生,工廠裡關於汽門的處理就是汽門座的切削,例如與汽門密封的45度切削面,另外有時會對氣道出口接近汽門座處,做大略的切削,降低氣流對汽門的接近角。
這是有些車廠的汽門處理被稱為單角或兩角(不好意思不知怎麼翻),單角指的就是汽門座的45度角切削,2角就是汽門座45度切削面加上氣道出口的平滑切削(上一段的第二種切削)。在成本考量以及大量生產的環境下,沒有多餘的時間與金錢花在微小的細節處,就像多角的精確汽門處理。如果真的需要大進氣量,通常工程師會用比較便宜的辦法,使用大一點的汽門,較寬的汽門座比較能容忍大量生產環境下的誤差,即使汽門與汽門座的接面很明顯的對不準,但在車輛的使用期間內還可以維持良好的密封性。當汽門與汽門座磨損後,汽門會往汽門座裡『沈下去』的傾向,造成接觸面不吻合以及『汽門包圍』的現象。當汽門因磨損開始『沈入』汽門座時,較寬的密封接面也可以撐較久的時間。



